GPU Servers | A4000 | P100 | V100 | A5000 | RTX4090 |
---|---|---|---|---|---|
GPU Details | CUDA Cores: 6144 Tensor Cores: 192 GPU Memory: 16GB | CUDA Cores: 3584 GPU Memory: 16GB | CUDA Cores: 5120 Tensor Cores: 640 GPU Memory: 16GB | CUDA Cores: 8192 Tensor Cores: 256 GPU Memory: 24GB | CUDA Cores: 16384 Tensor Cores: 512 GPU Memory: 24GB |
Platform | Ollama0.5.7 | Ollama0.5.7 | Ollama0.5.7 | Ollama0.5.7 | Ollama0.5.7 |
Model | Deepseek-R1, 14b, 9GB, Q4 | Deepseek-R1, 14b, 9GB, Q4 | Deepseek-R1, 14b, 9GB, Q4 | Deepseek-R1, 14b, 9GB, Q4 | Deepseek-R1, 14b, 9GB, Q4 |
Downloading Speed(MB/s) | 36 | 11 | 11 | 11 | 11 |
CPU Rate | 3% | 2.5% | 3% | 3% | 2% |
RAM Rate | 6% | 6% | 5% | 6% | 3% |
GPU UTL | 88% | 91% | 80% | 95% | 95% |
Eval Rate(tokens/s) | 35.87 | 18.99 | 48.63 | 45.63 | 58.62 |
Professional GPU VPS - A4000
Advanced GPU Dedicated Server - V100
Advanced GPU Dedicated Server - A5000
Enterprise GPU Dedicated Server - RTX 4090
Deepseek-R1:14B runs best on RTX 4090 and V100, offering the highest speed at 58.62 and 48.63 tokens/s, respectively. For budget-conscious setups, A4000 or A5000 provide good alternatives. Avoid outdated cards like P100 for inference workloads.
For setting up an inference server, prioritize high-performance GPUs, fast SSDs, and sufficient RAM to ensure smooth operation.
Would you like a guide on deploying Deepseek-R1:14B on a cloud server? Let me know in the comments!
deepseek-r1:14b test, deepseek-r1:14b benchmark, deepseek-r1:14b performance, deepseek-r1:14b ollama, deepseek-r1:14b server, best gpu for deepseek-r1:14b, deepseek-r1:14b gpu benchmark, deepseek-r1:14b rtx 4090, deepseek-r1:14b a5000, deepseek-r1:14b v100, deepseek-r1:14b p100, deepseek-r1:14b a4000, deepseek-r1:14b eval rate, deepseek-r1:14b inference, deepseek-r1:14b server recommendation, deepseek-r1:14b ollama test, deepseek-r1:14b cuda, deepseek-r1:14b gpu utilization, deepseek-r1:14b tensor cores