Hardware Introduction: RTX 3060 Ti Overview
Server Configuration:
- CPU: Dual 12-Core E5-2697v2 (24 Cores & 48 Threads)
- Memory: 128GB RAM
- Storage: 240GB SSD + 2TB SSD
- Network: 100Mbps-1Gbps
- Operating system: Windows 11 Pro
GPU Details:
- GPU:GeForce RTX 3060 Ti
- Microarchitecture: Ampere
- Compute Capability: 8.6
- CUDA cores: 4864
- Tensor Cores: 152
- vRAM: 8GB GDDR6
- FP32 performance: 16.2 TFLOPS
This GPU strikes a balance between cost and performance, making it ideal for AI workloads and gaming benchmarks alike. For LLM hosting, the 8GB VRAM is sufficient for running quantized models (4-bit precision), which drastically reduce memory requirements without significant loss in performance.
Results: LLM Benchmarking on Ollama
Models | llama2 | llama2 | llama3.1 | mistral | gemma | gemma2 | llava | wizardlm2 | qwen2 | qwen2.5 | stablelm2 | falcon2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameters | 7b | 13b | 8b | 7b | 7b | 9b | 7b | 7b | 7b | 7b | 12b | 11b |
Size(GB) | 3.8 | 7.4 | 4.9 | 4.1 | 5.0 | 5.4 | 4.7 | 4.1 | 4.4 | 4.7 | 7.0 | 6.4 |
Quantization | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
Running on | Ollama0.5.4 | Ollama0.5.4 | Ollama0.5.4 | Ollama0.5.4 | Ollama0.5.4 | Ollama0.5.4 | Ollama0.5.4 | Ollama0.5.4 | Ollama0.5.4 | Ollama0.5.4 | Ollama0.5.4 | Ollama0.5.4 |
Downloading Speed(mb/s) | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 |
CPU Rate | 2% | 27-42% | 3% | 3% | 20% | 21% | 3% | 3% | 3% | 3% | 15% | 8 |
RAM Rate | 3% | 7% | 5% | 5% | 9% | 6% | 5% | 5% | 5% | 5% | 5% | 5% |
GPU vRAM | 63% | 84% | 80% | 70% | 81% | 83% | 80% | 70% | 65% | 68% | 90% | 85% |
GPU UTL | 98% | 30-40% | 98% | 88% | 93% | 68% | 98% | 100% | 98% | 96% | 90% | 80% |
Eval Rate(tokens/s) | 73.07 | 9.25 | 57.34 | 71.16 | 31.95 | 23.80 | 72.00 | 70.79 | 63.73 | 58.13 | 18.73 | 31.20 |












Observations on Nvidia RTX 3060 Ti Server
1. Efficiency of Smaller Models
2. Challenges with Larger Models
3. Quantization is Essential
4. CPU and RAM Usage
Get Started with RTX 3060 Ti Server
Basic GPU Dedicated Server - T1000
- 64GB RAM
- Eight-Core Xeon E5-2690
- 120GB + 960GB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
- GPU: Nvidia Quadro T1000
- Microarchitecture: Turing
- CUDA Cores: 896
- GPU Memory: 8GB GDDR6
- FP32 Performance: 2.5 TFLOPS
- Ideal for Light Gaming, Remote Design, Android Emulators, and Entry-Level AI Tasks, etc
Advanced GPU Dedicated Server - RTX 3060 Ti
- 128GB RAM
- Dual 12-Core E5-2697v2
- 240GB SSD + 2TB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
- GPU: GeForce RTX 3060 Ti
- Microarchitecture: Ampere
- CUDA Cores: 4864
- Tensor Cores: 152
- GPU Memory: 8GB GDDR6
- FP32 Performance: 16.2 TFLOPS
Enterprise GPU Dedicated Server - RTX 4090
- 256GB RAM
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbps
- OS: Windows / Linux
- GPU: GeForce RTX 4090
- Microarchitecture: Ada Lovelace
- CUDA Cores: 16,384
- Tensor Cores: 512
- GPU Memory: 24 GB GDDR6X
- FP32 Performance: 82.6 TFLOPS
- Perfect for 3D rendering/modeling , CAD/ professional design, video editing, gaming, HPC, AI/deep learning.
Enterprise GPU Dedicated Server - RTX A6000
- 256GB RAM
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbps
- OS: Windows / Linux
- GPU: Nvidia Quadro RTX A6000
- Microarchitecture: Ampere
- CUDA Cores: 10,752
- Tensor Cores: 336
- GPU Memory: 48GB GDDR6
- FP32 Performance: 38.71 TFLOPS
- Optimally running AI, deep learning, data visualization, HPC, etc.
Conclusion: Is RTX 3060 Ti Good for LLM Hosting?
The RTX 3060 Ti proves to be a cost-effective choice for LLM benchmarks, especially when paired with Ollama's efficient quantization. For tasks involving models under 13 billion parameters, this setup offers competitive performance, high efficiency, and low resource consumption. If you're searching for an affordable RTX 3060 hosting solution to run LLMs on Ollama, this GPU delivers solid results without breaking the bank.
- Run small and mid-sized large language models (4B-12B parameters).
- Developers want to test the reasoning capabilities of LLM with low power consumption.
- The budget is limited but high performance GPU Dedicated Server is required.
RTX 3060 benchmark, Ollama benchmark, LLM benchmark, Ollama test, Nvidia RTX 3060 benchmark, Ollama 3060, RTX 3060 Hosting, Ollama RTX Server