This configuration makes it an ideal 2*RTX 5090 hosting solution for deep learning, LLM inference, and AI model training.
Models | deepseek-r1 | llama3.3 | qwen2.5 | qwen |
---|---|---|---|---|
Parameters | 70b | 70b | 72b | 110b |
Size (GB) | 43 | 43 | 47 | 63 |
Quantization | 4 | 4 | 4 | 4 |
Running on | Ollama0.6.5 | Ollama0.6.5 | Ollama0.6.5 | Ollama0.6.5 |
Downloading Speed(mb/s) | 113 | 113 | 113 | 113 |
CPU Rate | 1.3% | 1.3% | 1.3% | 33-35% |
RAM Rate | 2.1% | 2.1% | 2.1% | 2.1% |
GPU Memory (2 cards) | 70.9%, 70.4% | 71%, 75% | 77.9%, 77.6% | 94%, 91% |
GPU UTL (2 cards) | 45%, 48% | 47%, 45% | 45%, 48% | 20%, 20% |
Eval Rate(tokens/s) | 27.03 | 26.85 | 24.15 | 7.22 |
Metric | Nvidia 2*RTX5090 | Nvidia H100 | Nvidia 2*A100 40GB |
---|---|---|---|
Models | llama3.3:70b | llama3.3:70b | llama3.3:70b |
Eval Rate(tokens/s) | 26.85 | 24.34 | 18.91 |
Enterprise GPU Dedicated Server - RTX A6000
Multi-GPU Dedicated Server- 2xRTX 5090
Multi-GPU Dedicated Server - 2xA100
Enterprise GPU Dedicated Server - H100
Whether you’re looking for the best GPU for LLaMA 3.3 70B, cheapest setup to run DeepSeek-R1 70B, or Ollama 5090 hosting benchmarks, the verdict is clear: 👉 2× RTX 5090 is the new sweet spot for LLM hosting up to 72B.
Nvidia RTX 5090 Hosting, rtx 5090 ollama, dual rtx 5090 benchmark, rtx 5090 vs h100 inference, best gpu for 70b llm, 2x rtx 5090 llm inference, deepseek 70b benchmark, llama3 70b ollama, huggingface 70b gpu, ollama 5090 results, cheap gpu for large language models, 110b llm hardware requirements