Models | gemma-2-9b-it | gemma-2-27b-it | DeepSeek-R1-Distill-Llama-8B | DeepSeek-R1-Distill-Qwen-7B | DeepSeek-R1-Distill-Qwen-14B | DeepSeek-R1-Distill-Qwen-32B | QwQ-32B |
---|---|---|---|---|---|---|---|
Quantization | 16 | 16 | 16 | 16 | 16 | 16 | 16 |
Size(GB) | 18GB | 51GB | 15GB | 15GB | 28GB | 62GB | 62GB |
Backend/Platform | vLLM | vLLM | vLLM | vLLM | vLLM | vLLM | vLLM |
Successful Requests | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
Benchmark Duration(s) | 3.25 | 25.82 | 11.07 | 9.30 | 15.79 | 47.65 | 53.67 |
Total Input Tokens | 5000 | 5000 | 5000 | 5000 | 5000 | 5000 | 5000 |
Total Generated Tokens | 1066 | 7805 | 28257 | 26265 | 17897 | 22500 | 28027 |
Request (req/s) | 15.40 | 1.94 | 4.52 | 5.38 | 3.17 | 1.05 | 0.93 |
Input (tokens/s) | 1540.09 | 193.65 | 451.57 | 537.78 | 316.7 | 104.94 | 93.15 |
Output (tokens/s) | 328.35 | 302.28 | 2552.00 | 2824.93 | 1133.61 | 472.23 | 522.16 |
Total Throughput (tokens/s) | 1868.44 | 495.93 | 3003.57 | 3362.71 | 1450.31 | 577.17 | 615.31 |
Time to First Token(TTFT)(ms) | 405.48 | 1109.74 | 327.75 | 309.36 | 579.43 | 1299.31 | 1301.37 |
Time per Output Token(TPOT)(ms) | 71.98 | 45.87 | 17.88 | 14.96 | 25.31 | 52.65 | 59.92 |
Per User Eval Rate(tokens/s) | 13.91 | 21.80 | 55.92 | 66.84 | 39.51 | 18.99 | 16.69 |
Models | gemma-2-9b-it | gemma-2-27b-it | DeepSeek-R1-Distill-Llama-8B | DeepSeek-R1-Distill-Qwen-7B | DeepSeek-R1-Distill-Qwen-14B | DeepSeek-R1-Distill-Qwen-32B | QwQ-32B |
---|---|---|---|---|---|---|---|
Quantization | 16 | 16 | 16 | 16 | 16 | 16 | 16 |
Size(GB) | 18GB | 51GB | 15GB | 15GB | 28GB | 62GB | 62GB |
Backend/Platform | vLLM | vLLM | vLLM | vLLM | vLLM | vLLM | vLLM |
Successful Requests | 300 | 300 | 300 | 300 | 300 | 300 | 300 |
Benchmark Duration(s) | 13.72 | 50.47 | 28.55 | 24.26 | 35.18 | 230.45 | 291.19 |
Total Input Tokens | 30000 | 30000 | 30000 | 30000 | 30000 | 30000 | 30000 |
Total Generated Tokens | 7031 | 46159 | 165353 | 164823 | 117309 | 136100 | 174562 |
Request (req/s) | 21.86 | 5.94 | 10.51 | 12.37 | 8.53 | 1.3 | 1.03 |
Input (tokens/s) | 2185.93 | 594.46 | 1050.65 | 1236.61 | 852.76 | 130.18 | 103.02 |
Output (tokens/s) | 512.31 | 914.67 | 5790.92 | 6794.01 | 3334.57 | 590.57 | 599.49 |
Total Throughput (tokens/s) | 2698.24 | 1509.13 | 6841.57 | 8030.62 | 4187.33 | 720.75 | 702.51 |
Time to First Token(TTFT)(ms) | 1739.09 | 4307.48 | 1655.11 | 1538.09 | 2565.28 | 66999.66 | 94024.66 |
Time per Output Token(TPOT)(ms) | 176.85 | 109.99 | 44.51 | 37.78 | 55.64 | 82.41 | 96.36 |
Per User Eval Rate(tokens/s) | 5.65 | 9.09 | 22.47 | 26.47 | 17.97 | 12.13 | 10.38 |
Interested in optimizing your LLM deployment? Check out GPU server rental services or explore alternative GPUs for high-end AI inference.
Enterprise GPU Dedicated Server - H100
Enterprise GPU Dedicated Server - A100(80GB)
Multi-GPU Dedicated Server - 2xA100
Enterprise GPU Dedicated Server - A100
The A100 80GB is capable of efficient LLM inference but has limitations with large-scale deployments of 32B models. If you're looking for vLLM Performance Tuning, A100 80GB test results, or optimizing Hugging Face LLM inference, models like DeepSeek-R1 Distill-Qwen-7B and 14B offer the best balance of performance and response time.
For high-performance LLM inference at scale, consider H100 GPUs or optimizing model quantization to improve throughput.
The A100 80GB vLLM benchmark results underscore the importance of strategic model selection and performance tuning when deploying LLMs. By understanding the strengths and limitations of different models and hardware configurations, organizations can optimize their vLLM deployments for maximum efficiency and user satisfaction. Whether you're running benchmarks, considering a vLLM server rental, or planning a hardware upgrade, these insights will help you make informed decisions to meet your performance goals.
For more detailed benchmarks and performance tuning tips, stay tuned to our blog and explore our comprehensive guides on vLLM performance tuning, A100 80GB test results, and Hugging Face LLM deployments.
vLLM Performance Tuning, A100 80GB test, LLM A100 80GB, Hugging Face LLM, vLLM benchmark, vLLM server rental, LLM inference, A100 GPU benchmark, deepseek r1 performance, LLM throughput, AI model inference, vLLM token generation, AI latency test, cloud GPU rental